
Rodrigo Galdino Ximenes

Issues that Lead to Code Technical Debt in
Machine Learning Systems

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor : Prof. Marcos Kalinowski
Co-advisor: Profª Tatiana Escovedo

Rio de Janeiro
April 2024



Rodrigo Galdino Ximenes

Issues that Lead to Code Technical Debt in
Machine Learning Systems

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee:

Prof. Marcos Kalinowski
Advisor

Departamento de Informática – PUC-Rio

Profª Tatiana Escovedo
Co-advisor

 

Prof. Rodrigo Oliveira Spinola
Virginia Commonwealth University

Profª Maria Teresa Baldassarre
UNIBA

Rio de Janeiro, April 4th, 2024



All rights reserved.

Rodrigo Galdino Ximenes

Graduated in Metallurgical Engineering from the Federal
University of Rio de Janeiro (UFRJ) in 2013. Completed a
specialization course in Systems Analysis at PUC-Rio in 2017.

Bibliographic data
Ximenes, Rodrigo

Issues that Lead to Code Technical Debt in Machine
Learning Systems / Rodrigo Galdino Ximenes; advisor: Marcos
Kalinowski; co-advisor: Tatiana Escovedo. – 2024.

68 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2024.

Inclui bibliografia

1. Informática – Teses. 2. Dívida Técnica. 3. Aprendizado
de Máquina. 4. Grupos Focais. I. Kalinowski, Marcos. II.
Escovedo, Tatiana. III. Pontifícia Universidade Católica do Rio
de Janeiro. Departamento de Informática. IV. Título.

CDD: 004



To João Guilherme,
the little hands that brought me here.



Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

To CNPq and PUC-Rio, for the grants awarded, without which this work could
not have been carried out.

To all the professors and staff of the Department of Informatics at PUC-Rio,
for their teachings and assistance.

To Petrobras and SERPRO, for providing professionals who contributed to the
work.

To my colleagues at the Tecgraf Institute and ExACTa at PUC-Rio, who were
great motivators.

To professors Maria Teresa Baldassarre and Rodrigo Oliveira Spinola, who
participated in the examining committee.

To Professor Marcos Kalinowski for his generosity in guiding this work and to
Professor Tatiana Escovedo, who believed in the master’s degree even before
being accepted into the program.

To my in-laws, for helping me do what I couldn’t.

To my family, for all their love and support.

To my parents, who laid the strong foundation for me to reach this point.

To Renata, this would not have been possible without you.

To João Guilherme, who taught me that there is time for everything.



Abstract

Ximenes, Rodrigo; Kalinowski, Marcos (Advisor); Escovedo, Ta-
tiana (Co-Advisor). Issues that Lead to Code Technical Debt in
Machine Learning Systems. Rio de Janeiro, 2024. 68p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

[Context] Technical debt (TD) in machine learning (ML) systems, much
like its counterpart in software engineering (SE), holds the potential to lead to
future rework, posing risks to productivity, quality, and team morale. However,
better understanding code-related issues leading to TD in ML systems is still
a green field. [Objective] This dissertation aims to identify and discuss the
relevance of code-related issues leading to TD in ML code throughout the ML
life cycle. [Method] Initially, the study generated a list of potential factors that
may contribute to accruing TD in ML code. This compilation was achieved
by looking at the phases of the ML life cycle along with their usual tasks.
Subsequently, the identified issues were refined by evaluating their prevalence
and relevance in causing TD in ML code. This refinement process involved
soliciting feedback from industry professionals during two focus group sessions.
[Results] The study compiled a list of 34 potential issues contributing to TD
in the source code of ML systems. Through two focus group sessions with nine
participants, this list was refined into 30 issues leading to ML code-related
TD, with 24 considered highly relevant. The data pre-processing phase was the
most critical, with 14 issues considered highly relevant in potentially leading to
severe ML code TD. Five issues were considered highly relevant in the model
creation and training phase and four in the data collection phase. The final list
of issues is available to the community. [Conclusion] The list can help to raise
awareness on issues to be addressed throughout the ML life cycle to minimize
accruing TD, helping to improve the maintainability of ML systems.

Keywords
Technical Debt; Machine Learning; Focus Groups.



Resumo

Ximenes, Rodrigo; Kalinowski, Marcos; Escovedo, Tatiana. Problemas
que Levam a Geração de Dívida Técnica de Código em Sistemas
de Aprendizado de Máquina. Rio de Janeiro, 2024. 68p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

[Contexto] A dívida técnica (DT) em sistemas de aprendizado de má-
quina (AM), assim como sua contraparte em engenharia de software (ES), tem
o potencial de levar a retrabalhos futuros, representando riscos para produ-
tividade, qualidade e moral da equipe. No entanto, compreender melhor os
problemas relacionados ao código que levam à DT em sistemas de AM ainda
é um campo em aberto. [Objetivo] Este artigo tem como objetivo identificar e
discutir a relevância de problemas que levam a DT no código de AM ao longo
do ciclo de vida do AM. [Método] O estudo compilou inicialmente uma lista
de problemas potenciais que podem levar à DT no código de AM, analisando
as fases do ciclo de vida do AM e suas tarefas típicas. Posteriormente, a lista
de problemas foi refinada através da avaliação da prevalência e relevância dos
problemas que levam à DT no código de AM por meio de feedback coletado
de profissionais da indústria em duas sessões de grupos focais. [Resultados] O
estudo compilou uma lista inicial de 34 problemas que potencialmente contri-
buem para DT em código-fonte de sistemas de AM. Através de duas sessões
de grupos focais com nove participantes, esta lista foi refinada para 30 pro-
blemas que levam à DT relacionada ao código de AM, sendo 24 considerados
altamente relevantes. A fase de pré-processamento de dados foi a mais crítica,
com 14 problemas considerados altamente relevantes em potencialmente levar
a uma DT grave no código de AM. Cinco problemas foram considerados alta-
mente relevantes na fase de criação e treinamento do modelo e quatro na fase
de coleta de dados. A lista final de problemas está disponível para a comuni-
dade. [Conclusão] A lista pode ajudar a aumentar a conscientização sobre os
problemas a serem tratados ao longo do ciclo de vida do AM para minimizar
a acumulação de DT, ajudando a melhorar a manutenibilidade de sistemas de
AM.

Palavras-chave
Dívida Técnica; Aprendizado de Máquina; Grupos Focais.



Table of contents

1 Introduction 14
1.1 Context and Motivation 14
1.2 Goal and Research Questions 15
1.3 Methodology Overview 16
1.4 Dissertation Outline 17

2 Background and Related Work 18
2.1 Introduction 18
2.2 Technical Debt 18
2.3 Technical Debt in Machine Learning Systems 19
2.4 Machine Learning Life Cycle 19
2.5 Concluding Remarks 22

3 Compiling and Planning the Assessment of the Candidate
Issues 23

3.1 Introduction 23
3.2 Compilation of the Candidate Issues 23
3.3 Focus Group Main Goal and Scope 25
3.4 Focus Group Population 25
3.5 Focus Group Preparation 25
3.6 Focus Group Session Dynamics 26
3.7 Concluding Remarks 27

4 Assessing and Refining the List of Candidate Issues 28
4.1 Introduction 28
4.2 Participant Characterization 28
4.3 Issues of the Data Collection ML Life Cycle Phase 29
4.4 Synthesis of the Results 34
4.5 Concluding Remarks 34

5 Discussion 36
5.1 Introduction 36
5.2 Data Collection Phase 37
5.3 Data Pre-Processing Phase 38
5.4 Model Creation and Training Phase 38
5.5 Model Evaluation Phase 40
5.6 RQ1. What are potential issues that could lead to ML code TD? 41
5.7 RQ2. Do the identified issues occur in practice? 41
5.8 RQ3. Are the issues perceived as relevant by practitioners in terms

of leading to TD? 42
5.9 Limitations and Threats to Validity 42
5.10 Concluding Remarks 43

6 Conclusion 44
6.1 Contributions 44



6.2 Future Work 44

7 Bibliography 46

A Appendix 48
A.1 Issues of the Data Pre-processing ML Life Cycle Phase 48
A.2 Issues of the Model Creation and Training ML Life Cycle Phase 61
A.3 Issues of the Model Evaluation ML Life Cycle Phase 66



List of figures

Figure 2.1 Phases of the current CRISP-DM process model for data
mining (CHAPMAN et al., 2000) 20
Figure 2.2 The nine stages of the ML workflow by Amershi et al. (AMER-
SHI et al., 2019) 21
Figure 2.3 Seven typical stages of the ML life cycle 22

Figure 3.1 Miro discussion template 26

Figure 4.1 Total - Missing data integration 30
Figure 4.2 Total - Insufficient data integration 31
Figure 4.3 Total - Improper data integration 32
Figure 4.4 Total - Insufficient data consumption 33
Figure 4.5 Total - Improper data consumption 34

Figure 5.1 Heat map of numbers of issues per phase 42
Figure 5.2 Number of issues per phase 42

Figure A.1 Total - Missed identification of outliers 49
Figure A.2 Total - Incomplete outlier identification 49
Figure A.3 Total - Inaccurate outlier detection 50
Figure A.4 Total - Missed features selection 51
Figure A.5 Total - Incomplete feature selection 52
Figure A.6 Total - Inaccurate feature selection 53
Figure A.7 Total - Not identifying missing values 54
Figure A.8 Total - Incomplete missing value identification 54
Figure A.9 Total - Inaccurate missing value identification 55
Figure A.10 Total- Missed rebalancing (typically by resampling) 56
Figure A.11 Total - Incorrect rebalancing 56
Figure A.12 Total - Not removing inconsistent data 57
Figure A.13 Total - Incomplete data removal 58
Figure A.14 Total - Removing inconsistent data inappropriately 58
Figure A.15 Total - Missed pre-processing scaling 59
Figure A.16 Total - Incomplete pre-processing scaling 60
Figure A.17 Total - Inaccurate pre-processing scaling 61
Figure A.18 Total - Neglected testing of candidate algorithm possibilities 61
Figure A.19 Total - Insufficient exploration of candidate algorithm options 62
Figure A.20 Total - Neglected splitting training/test/validation data 63
Figure A.21 Total - Inappropriate splitting of training/test/validation data 64
Figure A.22 Total - Neglected hyperparameter adjustment 64
Figure A.23 Total - Suboptimal hyperparameter adjustment 65
Figure A.24 Total - Incorrect hyperparameter adjustment 66
Figure A.25 Total - Suboptimal evaluation metric selection 67



List of tables

Table 3.1 Issues that may lead to code-related TD in ML life cycle 24

Table 4.1 Participant Background Collected via Characterization Form 28
Table 4.2 Final result 35

Table 5.1 Final result for Data Collection 37
Table 5.2 Final result for Data Pre-processing 39
Table 5.3 Final result for Model Creation and Training 40
Table 5.4 Final result for Model Evaluation 41



List of Abreviations

TD – Technical Debts

ML – Machine Learning

SE – Software Engineering

OO – Object-Oriented

AI – Artificial Intelligence

CRISP-DM – Cross-Industry Standard Process for Data Mining

NLP – Natural Language Processing

PUC-Rio – Pontifical Catholic University of Rio de Janeiro



Barukh ata Adonai Eloheinu melekh ha-olam 



1
Introduction

1.1
Context and Motivation

The concept of technical debt (TD), first introduced by Ward Cunning-
ham in 1992 (CUNNINGHAM, 1992), draws an analogy between software
engineering (SE) and financial borrowing. This analogy highlights how opting
for quicker deliveries in SE can lead to accumulated ‘debt’ that, similar to
its financial counterpart, accrues ‘interest’ over time and demands eventual
repayment. Leveraging TD can accelerate project timelines, especially when
focusing on developing features rapidly. However, it is imperative to undertake
rigorous management and analysis to repay this debt, thereby minimizing the
risks associated with these expedited processes.

The intersection of TD and machine learning (ML) systems has emerged
as a noteworthy area of interest, as emphasized by Sculley et al. (SCULLEY
et al., 2015). Despite this growing attention, the intricacies of identifying and
managing TD within the context of ML systems remain relatively unexplored
areas warranting further research.

Furthermore, Martinez et al. (MARTINEZ; VILES; OLAIZOLA, 2021)
identified primary challenges in executing real-world ML projects, including
low process maturity, reproducibility issues, absence of validation data, and
inadequate quality assurance checks. Addressing these challenges underscores
the importance of cohesive coordination among team and project management
and efficient data information management to ensure reproducibility, reliabil-
ity, and achieving desired project outcomes.

In another study, Pimentel et al. (PIMENTEL et al., 2019) uncovered
sub-optimal practices concerning notebooks, widely used in ML for coding,
data visualization, and result presentation. Their findings revealed deficiencies
such as a lack of code testing, disorderly cell arrangement, unexecuted code
cells, and potential hidden states. These kinds of problems can contribute to
TD accumulation.

Amershi et al. (AMERSHI et al., 2019) observed software teams at
Microsoft developing AI-based applications, employing a comprehensive nine-
stage workflow process categorized into data-oriented and model-oriented
phases. Kalinowski et al. (KALINOWSKI et al., 2023) abstracted seven generic
life cycle stages based on the nine ML life cycle stages by Amershi et al. and



Chapter 1. Introduction 15

the Cross-Industry Standard Process Model for Data Mining (CRISP-DM)
(CHAPMAN et al., 2000) model phases.

These stages include Data Collection, involving gathering and analyzing
data, and Data Pre-Processing, considered the most time-consuming phase,
addressing, for instance, missing data and outliers. Subsequent stages entail
listing possible models, evaluating results, and post-processing activities, cul-
minating in result presentation and value generation. This process reflects a
structured approach to ML project development, encompassing various tasks
from data collection to result evaluation and presentation, ensuring a compre-
hensive and systematic process to achieve desired project outcomes.

Given this scenario, the motivation behind this study is to kick-start
the exploration of potential causes of code-related TD accumulation in ML
systems and shed light on the barriers that developers may encounter during
routine tasks throughout the life cycle of an ML system. Existing studies
predominantly focus on the types of TD and the emergence of new ones
compared to those already known in SE. This research aims to raise awareness
among ML system developers about the risks of accumulating code-related TD
encountered during typical tasks throughout the life cycle of an ML system.

Hence, this research aims to identify and evaluate code-related issues
leading to TD within ML code. To this end, we analyzed typical tasks across
each phase of the ML life cycle and categorized problems.

1.2
Goal and Research Questions

Our main research goal is to compile and assess a list of issues that can
lead to ML code TD.

The assessment goal can be stated following the GQM goal definition
template (BASILI; ROMBACH, 1988) as follows: Analyze a candidate
list of issues that can lead to ML code TD with the purpose
of characterizing with respect to the occurrence in practice and
perceived relevance of the issues from the point of view of ML
experts in the context of developing ML systems.

Therefore, our first research question concerns compiling such a list.

RQ1: What are potential issues that could lead to ML code TD?
We aim to establish a set of potential issues that can lead to ML code

TD by analyzing problems related to typical activities conducted throughout
the different ML life cycle phases.



Chapter 1. Introduction 16

After compiling such a list, we derive the following two research questions.

RQ2: Do the identified issues occur in practice?
This research question verifies whether the proposed issues manifest in

real-world ML-enabled systems.

RQ3. Are the issues perceived as relevant by practitioners in terms of
leading to TD?

This research question evaluates the perceived relevance of the suggested
issues in the candidate list regarding leading to TD.

Hence, considering these research questions, we assume that frequently
occurring issues perceived as relevant should be shared with practitioners to
avoid them in ML system projects. To assess these characteristics from a
practitioner’s point of view, we conducted two focus group sessions with nine
ML experts.

1.3
Methodology Overview

We initiated our study by searching the literature and targeting articles
discussing various types of TD in ML systems to foster and gain insights into
potential issues leading to code-related TD. We found a Systematic Mapping
Study by Bogner et al. (BOGNER; VERDECCHIA; GEROSTATHOPOU-
LOS, 2021), which revealed four new types of TD in AI-based systems, includ-
ing data, model, configuration, and ethics debt. Moreover, it also highlights the
recurring presence of established TD types such as infrastructure, architectural,
code, and test debt. In addition, Tang et al. (TANG et al., 2021) introduced
seven distinct TD categories relevant to ML, focusing on custom data types.
These categories include duplicate feature extraction code, reusability, unnec-
essary model code, model code comprehension, modifiability, and duplicate
model code.

Considering this previous research, we established our methodology in
two key steps:

1. Compilation of the Candidate Issues. Analyzing potential problems re-
lated to typical activities conducted throughout the different ML life
cycle phases to build a list of issues that may lead to code-related TD.
The list was refined in discussions with an independent researcher, keep-
ing in mind the main tasks to be performed in each of the typical stages



Chapter 1. Introduction 17

of the ML life cycle. Subsequently, this list was reviewed by an addi-
tional independent researcher to eliminate inconsistencies and add any
overlooked issues. Further details on the compilation and the candidate
list can be found in Section 3.

2. Focus Group Sessions. We conducted two focus group sessions, following
the guidelines by Kontio et al. (KONTIO; BRAGGE; LEHTOLA, 2008)
to facilitate in-depth discussions and obtain insights from ML experts,
with the objective of assessing the occurrence and relevance of the
candidate issues. The focus group sessions were conducted with nine
ML experts. Further details on the focus group sessions and their results
can be found in Sections 3 and 4.

1.4
Dissertation Outline

This dissertation is organized as follows. In Section 2, the background
and an overview of relevant prior research are provided. Section 3 outlines
the compilation and planning of the assessment of the candidate issues.
Section 4 details the assessment and refinement of the list of candidate issues.
Subsequently, the analysis of the results is provided in Section 5, and finally, in
Section 6, the document concludes and discusses potential avenues for future
research.



2
Background and Related Work

2.1
Introduction

This chapter introduces the relationship between TD and ML systems,
providing a foundational understanding of both concepts. It begins by elu-
cidating the origins of TD in SE, drawing parallels with financial debt and
emphasizing its implications for productivity and code maintainability.

Moreover, it explores recent research highlighting the emergence of new
types of TD within AI-based systems, shedding light on specific challenges
faced in ML projects. Furthermore, the chapter delves into the ML life cycle,
outlining the stages of ML project development, from data collection to model
deployment and monitoring.

This chapter lays the groundwork for subsequent discussions on identi-
fying, assessing, and managing TD in ML.

2.2
Technical Debt

In software development, Ward Cunningham (CUNNINGHAM, 1992)
introduced the concept of TD, likening it to financial debt that allows for
faster initial development but incurs “interest" to be paid later. Accumulating
TD has far-reaching consequences.

According to Tom et al. (TOM; AURUM; VIDGEN, 2013), TD reduces
productivity by making maintenance and code modifications more challenging.
It can negatively impact developers’ morale, as they need to invest extra
effort in dealing with it. Over time, developers must repay the “interest" and
“principal" on the accrued debt to maintain their system.

Taking a minimally invasive approach is advisable to manage TD cost-
effectively, considering potential gains and losses. Most systems with TD are
already in operation and have a value that needs to be preserved. Dealing with
TD carries the risk of causing more harm than good.

In a systematic literature review, Alves et al. (ALVES et al., 2014)
gathered various types of TD. The primary focus here is on Code TD,
which concerns issues within the source code that hinder code readability
and maintenance. It’s typically addressed by improving coding practices and



Chapter 2. Background and Related Work 19

involves problems like code duplication and overly complex code structures, as
defined by Li et al. (LI; AVGERIOU; LIANG, 2015).

2.3
Technical Debt in Machine Learning Systems

Bogner et al. (BOGNER; VERDECCHIA; GEROSTATHOPOULOS,
2021), in their systematic mapping study based on 21 primary studies, iden-
tified four new types of TD that emerge in Artificial Intelligence(AI)-based
systems: data debt, model debt, configuration debt, and ethics debt. They
also noted that AI systems commonly use established TD types like infrastruc-
ture, architectural, code, and test debt. However, they may have AI-specific
aspects, such as managing and monitoring AI pipelines and models to mitigate
infrastructure debt.

Tang et al. (TANG et al., 2021) recognized a knowledge gap regarding
the evolution and maintenance of ML systems. They conducted a study across
26 projects, identifying seven new TD categories specific to ML, including
custom data types, duplicate feature extraction code, model code reusability,
unnecessary model code, model code comprehension, model code modifiability,
and duplicate model code. It was highlighted that duplication significantly
contributes to TD in ML systems, particularly in configuration and model
code.

Tang et al. also highlight that while traditional software developers
frequently use inheritance to reduce code duplication, the increasing popularity
of scripting languages, mostly used in ML systems, requires model code to be
written in an object-oriented manner. This transition poses challenges for ML
developers to incorporate inheritance effectively. Combating code duplication
debt, a common issue in ML code is crucial.

In line with this previous study, Cabral et al. (CABRAL et al., 2024)
provided evidence that the adoption of object-oriented design principles,
widely used to avoid TD in conventional software engineering, can improve
code understanding within the realm of ML projects, also enhancing the
maintainability of ML code.

2.4
Machine Learning Life Cycle

The Cross-Industry Standard Process Model for Data Mining (CRISP-
DM) (CHAPMAN et al., 2000) process model for data mining provides an
overview of the life cycle of a data mining project. It contains the phases of
a project, their respective tasks, and the relationships between them. The life



Chapter 2. Background and Related Work 20

cycle of a data mining project consists of six phases, as shown in Figure 2.1. The
sequence of the phases is not rigid. Moving back and forth between different
phases is always required. It depends on the outcome of each phase and which
phase or particular task has to be performed next. The arrows indicate the
most important and frequent dependencies between phases.

Figure 2.1: Phases of the current CRISP-DM process model for data min-
ing (CHAPMAN et al., 2000)

In their study, Amershi et al. (AMERSHI et al., 2019) observed software
teams at Microsoft as they developed AI-based applications. They utilized a
comprehensive nine-stage workflow process, as Figure 2.2 illustrates, drawing
from their prior experiences in AI application development related to search,
natural language processing (NLP), and data science tools.

The nine stages fall into two main categories: data-oriented phases, which
involve data collection, cleaning, and labeling, and model-oriented phases,
including defining model requirements, feature engineering, model training,
evaluation, deployment, and monitoring. It’s worth noting that the larger
feedback arrows indicate that model evaluation and monitoring can lead to
a return to any of the earlier stages, allowing for iterative refinement. The
smaller feedback arrow suggests that model training may loop back to the
feature engineering stage in cases like representation learning.

Based on the previously mentioned nine ML life cycle stages presented
by Amershi et al. and the CRISP-DM industry-independent process model
phases (CHAPMAN et al., 2000), Kalinowski et al. (KALINOWSKI et al.,
2023) abstracted seven generic life cycle stages, as depicted in Figure 2.3.

The Data collection phase involves gathering the necessary information
and effectively collecting and analyzing the data to address the problems



Chapter 2. Background and Related Work 21

Figure 2.2: The nine stages of the ML workflow by Amershi et al. (AMERSHI
et al., 2019)

identified in the Problem Understanding and Requirements phase. These data
are typically, but not necessarily, organized in one or more databases, which
can be relational databases, Data Warehouses, Data Marts, or Data Lakes.
From there, ETL operations (Extraction, Transformation, Loading) can be
performed on the source data to prepare it for future model building.

The third stage, where Data Pre-Processing activities are carried out, is
the most time-consuming and laborious in a Data Science project, estimated to
consume at least 70% of the total project time. It may be necessary to remove
or complement missing data, correct or mitigate discrepant data (outliers) and
class imbalances, and select the most appropriate variables and instances to
compose the model(s) to be built in the next stage.

The fourth stage involves listing the possible and feasible models for
each type of problem, estimating the parameters that compose the models
based on the pre-processed instances and variables from the previous stage,
and evaluating the results of each model using metrics and a fair comparison
process.

Next, post-processing activities are carried out in the fifth stage: business
heuristics are combined with the adjusted models from the previous stage,
and a final evaluation is made, considering the strengths and difficulties
encountered in implementing each model.

Then comes the sixth stage, the presentation of results. It is recom-
mended to report the methodology adopted to address the solution to the
managers’ demands, compare the best model results with the current bench-
mark (if available), and plan the steps for implementing the proposed solution.

In the seventh stage, the focus is on qualitatively generating value
for the enterprise (e.g., listing operational and human resources gains) and
quantitatively (e.g., calculating ROI - Return on Investment).

In this work, similar to other recent research on the topic (e.g., (ALVES
et al., 2023), (ZIMELEWICZ et al., 2024)), we consider these generic life cycle
stages.



Chapter 2. Background and Related Work 22

Figure 2.3: Seven typical stages of the ML life cycle

2.5
Concluding Remarks

In conclusion, the exploration of TD within ML systems reveals the
multidimensional nature of TD accumulation and its implications throughout
the ML life cycle. By identifying and characterizing various types of TD specific
to ML, researchers and practitioners gain insights into the challenges posed by
code duplication, model complexity, and evolving ML workflows.

Understanding the nuances of TD in ML systems can enable more
informed decisions and developing proactive management strategies to mitigate
TD and ensure the long-term sustainability of ML projects. As ML continues
to advance and find applications across diverse domains, addressing TD
remains paramount for building resilient and dependable ML solutions that
can effectively meet the demands of real-world scenarios.



3
Compiling and Planning the Assessment of the Candidate
Issues

3.1
Introduction

This chapter outlines the methodology employed to compile the list of
issues that may lead to code-related TD in ML-enabled systems and the
planning of the focus group sessions to investigate the occurrence and relevance
of these issues. The preparation for the sessions is discussed, including creating
an interactive Miro board and defining the dynamics of the discussions.

3.2
Compilation of the Candidate Issues

Practitioners employ various operational strategies to tackle the chal-
lenges identified across the ML project life cycle. For instance, during the data
collection and pre-processing phases, data cleaning techniques are utilized, in-
cluding detection and handling of missing values and outliers, as well as data
normalization and standardization to ensure the required quality and consis-
tency for training models. Throughout model creation and training, practition-
ers employ cross-validation methods and model selection techniques to ensure
model generalization and adequate performance.

These operational approaches are crucial for ensuring the success and
sustainability of ML projects in the face of recurring challenges encountered
along the way. Gathering these common activities across different ML project
life cycle phases, Table 3.1 was developed. Even though not all are executed
in every ML project, they reflect typical activities ML practitioners conduct
throughout the project life cycle. It’s important to note that, when compiling
this list, the focus was not to confirm whether a specific issue leads to code-
related TD; rather, the main objective is to highlight which common tasks
executed along the way may accumulate TD and its relevance.

The table is structured with five columns: the first denotes the specific
phase in the ML life cycle, the second column describes the activity executed
during the development of an ML-enabled system, and the other three columns
represent categories of problems (e.g., Missing, Incomplete/Insufficient, or
Inappropriate/Wrong) inspired in the IEEE Standard for Software Anomalies
(IEEE. . . , 2010).



Chapter 3. Compiling and Planning the Assessment of the Candidate Issues 24

The combination of the categories of problem names with the activity
generates what we term as issues, for instance, ‘Missing identifying outliers,
Incomplete/Insufficient identifying outliers, or Inappropriate/Wrong identify-
ing outliers’.

The principal objective of this table was to present it to experts to ensure
that these issues were relevant and to warn the ML teams while developing an
ML-enabled system.

Note that some of the combinations do not make sense in real-world
(e.g., Incomplete/Insufficient Rebalancing), so they were not considered, and
it is marked with an ‘×’ in Table 3.1. All possible combinations are marked
with an ‘✓.’

By joining all, the final list with 34 candidate issues that may lead to
TD was ready to be presented to the experts to discuss.

Table 3.1: Issues that may lead to code-related TD in ML life cycle

Phase Activity Missing Incomplete/ Inappropriate/
Insufficient Wrong

Data
collection Integrating correctly data ✓ ✓ ✓

Consuming correctly data ✓ ✓ ✓

Data pre-
processing Identifying outliers ✓ ✓ ✓

Selecting features when
needed ✓ ✓ ✓

Identifying missing values ✓ ✓ ✓

Rebalancing (typically by
resampling) ✓ × ✓

Removing inconsistent data
(remove the inconsistency) ✓ ✓ ✓

Pre-processing scaling ✓ ✓ ✓

Model
creation and
training

Testing candidate algo-
rithm possibilities ✓ ✓ ✓

Splitting training/test/vali-
dation data ✓ × ✓

Hyperparameter tuning ✓ ✓ ✓

Model
evaluation Choosing evaluation metric × ✓ ✓

Properly using methods for
evaluating a model’s perfor-
mance

× × ✓



Chapter 3. Compiling and Planning the Assessment of the Candidate Issues 25

3.3
Focus Group Main Goal and Scope

The main goal of the focus group sessions is to confirm if the identified
issues occur in practice and if they are perceived as relevant by practitioners in
terms of leading to TD through experts’ opinions. The GQM (Goal Question
Metric) definition template (BASILI; ROMBACH, 1988) is used to set this
goal as follows: Analyze the candidate list of issues that can lead to
ML code TD with the purpose of characterizing with respect to the
occurrence in practice and perceived relevance of the issues from
the point of view of ML experts in the context of developing ML
systems.

3.4
Focus Group Population

We employed a targeted sampling approach for our population of ML
experts to obtain more precise responses. Specifically, we selected participants
who were actively engaged in ML projects at ExACTa, Petrobras, and SER-
PRO.

The ExACTa (Experimentation-based Agile Co-creation initiative for
Digital Transformation) R&D laboratory at PUC-Rio has approximately 100
collaborators working with several industry partners.

Petrobras is a Brazilian public corporation that operates in an integrated
and specialized manner in the oil, natural gas, and energy industries, with
expertise in exploration and production. This company has approximately
40,000 employees.

SERPRO (Federal Data Processing Service) is a Brazilian public com-
pany providing information technology services. It is the Brazilian govern-
ment’s primary provider of technological solutions and currently employs ap-
proximately 10,000 staff members.

Our participant selection process was driven by convenience, as we had
direct access to these professionals. We extended invitations to individuals we
knew possessed relevant experience and were actively involved in developing
ML-enabled systems.

3.5
Focus Group Preparation

We used the online tool Miro1 to create the virtual template, as depicted
in Figure 3.1. Leveraging this platform, we crafted an interactive board that

1https://miro.com/



Chapter 3. Compiling and Planning the Assessment of the Candidate Issues 26

streamlined the orchestration of the focus group session.

Figure 3.1: Miro discussion template

The chart comprises four columns. The first indicates a phase of the ML
system life cycle. The other three columns represent categories of problems
(e.g., Missing, Incomplete/Insufficient, and Inappropriate/Wrong), as men-
tioned in Section 3.2. Within each cell is the typical activity alongside two
questions concerning its occurrence and relevance.

To streamline discussions, we employed the Likert scale (1- Disagree, 2-
Partially Disagree, 3- Not Sure, 4- Partially Agree, and 5- Agree) to assess
participants’ levels of agreement for the two questions posed for all candidate
issues. The first question was It may occur in practice, indicating the
likelihood of the issue leading to code-related TD. The second question was
I consider it relevant, indicating the relevance of TD resulting from the
issue, assuming it occurs.

Each participant was represented by a colored bullet, which allowed
them to move freely to their preferred answer on a Likert scale yellow box.
Additionally, a green box containing explanations was provided on the right-
hand side for clarity and to eliminate any uncertainties regarding the questions
posed. Moreover, the Miro platform enabled participants to comment by
adding light-yellow sticky notes to each proposed TD item. This collaborative
and interactive approach facilitated an in-depth and insightful discussion
during the focus group session.

A Participant Characterization Form was developed to gather informa-
tion on each participant, enabling a more accurate interpretation of the results.

3.6
Focus Group Session Dynamics

Following the recommendation of Menary et al. (MENARY et al., 2021)
for online focus-group sessions, we organized multiple sessions with limited
participants. To accommodate this, we divided the participants into two focus
group sessions based on availability and preferences.

The two remote focus group sessions took place via video conferences on
June 15, 2023, and September 22, 2023. The video conferences were held by



Chapter 3. Compiling and Planning the Assessment of the Candidate Issues 27

Zoom platform 2 and recorded to facilitate getting all relevant participants’
comments. Both sessions were approximately 2 hours in duration.

These sessions included nine industry practitioners, with four partici-
pants in the first and five in the second. Additionally, two researchers served
as facilitators throughout both sessions.

The sessions were organized following the steps:

1. The Participant Characterization Form was distributed and filled by the
participants;

2. A brief presentation was included to provide participants with a clear
definition of TD;

3. Subsequently, the facilitators introduced the Miro board and how the
session would be conducted. They explained the approach that would be
taken during the discussions;

4. Finally, the facilitators proceeded to individually introduce each issue to
discuss and register the opinions and comments of the experts.

3.7
Concluding Remarks

This chapter detailed the methodology employed in conducting the focus
group sessions to investigate the relevance and occurrence of issues that
may lead to code-related TD in ML-enabled systems. Initially, 34 candidate
issues that could contribute to TD across various phases of the ML life
cycle were compiled. These issues were derived from analyzing typical tasks
in each phase and categorized into three main problem categories: Missing,
Incomplete/Insufficient, and Inappropriate/Wrong. The chapter also detailed
the preparations for the focus group sessions and the session dynamics. The
results will be described in the next chapter.

2https://zoom.us/



4
Assessing and Refining the List of Candidate Issues

4.1
Introduction

In this chapter, we present the characterization of the participants
and the results obtained from the focus group sessions. To summarize the
discussions, we showcase the final votes from each session, provide visual
representations, and report expert comments to enhance the understanding
of the results.

4.2
Participant Characterization

Table 4.1 offers an overview of the participants’ backgrounds. As men-
tioned, the data for this table was gathered through an online Participant Char-
acterization Form via Google Forms and distributed to participants shortly
before the beginning of the focus group session. It was composed of four ques-
tions:

– Q1. What is your highest education level?

– Q2. How many years of experience do you have developing machine
learning-enabled systems?

– Q3. How many machine learning-enabled system projects have you
worked on?

– Q4. How do you classify your level of knowledge concerning technical
debt? (B: Beginner, M: Mid-level, A: Advanced)

Table 4.1: Participant Background Collected via Characterization Form

1º Session 2º Session

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9

Q1 PhD MSc MSc MSc PhD MSc BSc BSc BSc

Q2 14 3 3 4 10 4 4 1 2

Q3 15 10 3 5 15 1 3 3 1

Q4 B M M M A B B M M



Chapter 4. Assessing and Refining the List of Candidate Issues 29

As previously mentioned, we conducted two focus group sessions. The
first session included four participants, P1 to P4, while the second involved
five participants, identified as P5 to P9.

It’s noteworthy, as indicated in Table 4.1, that the recruited participants
are experienced data scientists, predominantly holding either an MSc or a
PhD in Computer Science.

To more objectively communicate our results, in the section 4.3, we
present the detailed analyses only for the data collection ML life cycle phase
issues. Similar analyses for issues of all other ML life cycle phases can be found
in Appendix A.

4.3
Issues of the Data Collection ML Life Cycle Phase

The presentation of results follows a structured approach: we enumerate
typical activities, offer examples, and detail the discussion and outcomes for
each candidate issue. During these discussions, we exhibit the final votes cast
in each session, offer visual representations, and incorporate expert comments
to enhance comprehension of the results.

The visual representation follows a Likert scale with the following colors:
dark red for disagree, light red for partially disagree, gray for not sure, light
green for partially agree, and dark green for agree.

Please note that the names of the issues were designated to make the
content more understandable to the reader, replacing the initial concatenated
name presented in the sessions solely to explain the main idea to the par-
ticipants. For example, the combined name Inappropriate/Wrong identifying
outliers was renamed to Inaccurate outlier detection.

The criteria for determining occurrence is if the majority of votes fall
between partially agree or agree. Regarding relevance, it is considered high if
the majority of votes are agree; otherwise, it is considered low. Additionally,
it’s worth noting that the median was used to determine the final result.

It is also important to mention that the final votes for each session can
be found in our open science repository Zenodo1. Here, to be concise, only the
aggregated picture is presented.

– Integrating data correctly - Example: When you have multiple
data sources (CSV, Excel sheets, SQL databases, NoSQL databases) to
integrate and create a unified data source.

1https://zenodo.org/doi/10.5281/zenodo.10035700



Chapter 4. Assessing and Refining the List of Candidate Issues 30

1. Missing data integration:
In the first session, the first question related to the occurrence; two
participants reported agreeing, one reported partially agreeing, and
one reported partially disagreeing. For the second question related
to relevance, two participants reported partially agree, one reported
partially disagree, and one wrote disagree.
In the second session, all participants indicated agreement in the
first question. One participant reported partial agreement about
the second question, while four fully agreed.
Participant P5 gave an example: "In the context of predictive mod-
els, a lack of data integration can lead to the absence of relevant
information for the model, hampering the achievement of high ac-
curacy. For example, in practice, a crucial explanatory column may
be missing, undermining the model’s ability to adequately capture
relationships between the available variables".
Participant P8 reaffirmed the previous comment: "There will be a
possibility of future rework because, when evaluating the results,
it may be challenging to explain or find a justification for the
inadequate model due to the absence of a portion of the data".
It becomes evident that, in the second session, as in the first session,
it was confirmed that it occurs in practice and can lead to code-
related TD. Its relevance, to varying degrees, is acknowledged, but
it can be classified as an issue of low relevance using the median.
Figure 4.1 illustrates the total for this issue.

Figure 4.1: Total - Missing data integration

2. Insufficient data integration:
In the first session, in both questions, all participants reported
agreeing.
In the second session, all participants agreed on the first statement.
In the second question, one participant reported partial agreement
and four reported agreement.
Participant P5 stated: "You can be unlucky not to consider an
important part of the data; on the other hand, you can also be lucky



Chapter 4. Assessing and Refining the List of Candidate Issues 31

not to consider a part that isn’t so crucial". After, gave an example:
"In one scenario, for instance, when building a model to predict
diesel prices, data scientists may have no idea which variables
influence diesel prices. It’s possible not to know whether a particular
piece of data is important or to be unaware of the existence of some
available data. This ultimately poses a challenge during the model
generation process". And then conclude: "It is possible that a lack of
understanding of the business and the available data can result in
insufficient data integration".
Participant P7 argued: "I think it’s quite common and happens more
often than simply missing (the previous issue). You consider one
part later and then realize that something is missing. I believe it’s
more common than the first scenario because when you do nothing,
you immediately see that a step in the process is missing.".
Figure 4.2 provides a visual representation of the total for this issue,
leaving no doubt about its status as a highly relevant issue.

Figure 4.2: Total - Insufficient data integration

3. Improper data integration:
In both sessions, all participants reported agreement in response to
both questions.
Participant P6 provided an example from a project’s outset: "In my
team, we utilize a template that streamlines data integration. Before
adopting this approach, we encountered challenges as multiple team
members were tackling the same issue independently, resulting in
redundant efforts".
Participant P5 stated: "When data integration is done incompletely
or inadequately, considering that the machine learning model will
learn from this input data, it may not learn effectively, leading to
poor accuracy. However, the impact can be even worse, as the model
can learn incorrectly if data integration is done incorrectly".
Upon analyzing the results from both sessions, Figure 4.3 unmis-
takably establishes the classification of this issue as highly relevant.



Chapter 4. Assessing and Refining the List of Candidate Issues 32

Figure 4.3: Total - Improper data integration

– Consuming data correctly - Example: When you have a large unified
data source, consume only part of it.

1. Missing consuming data correctly:
In the first session, the first question about occurrence; two partic-
ipants reported partially disagreeing, one reported disagreeing, and
one said to be not sure. In the second question about relevance,
three reported disagreeing, and one participant reported partially
disagreeing.
Participant P1 expressed skepticism about the feasibility of contin-
uing development in this scenario, stating: "I do not see the possi-
bility of continuing development in this case" while Participant P2
asserted that "this is a crucial step missing; it would be a bug".
In the second session, three participants reported disagreeing in the
first question, and one said to be unsure. In the second question,
one reported disagreeing, and four said were not sure.
Counting the votes from both sessions, it is evident that this issue
can be discarded.

2. Insufficient data consumption:
In the first session, the question about occurrence, one participant
reported partially agreeing, and three said agreeing. Regarding
the question about relevance, one participant reported partially
disagreeing, and three reported agreeing.
Participant P3 pointed out that "I disagree with this statement
because when data arrives incomplete, it is important to adopt
an approach that allows us to handle this gap efficiently. This
doesn’t necessarily lead to TD. It’s more a matter of recognizing
the situation and establishing a policy to address it. It doesn’t need
to become a problem automatically.
This is a challenge we often encounter, and we deal with it by filling
in the gaps by repeating the previous value, typically the standard
procedure, or by applying appropriate calculations for the situation".



Chapter 4. Assessing and Refining the List of Candidate Issues 33

In the second session, all participants agreed regarding the first
question. In the second question, one participant reported partial
agreement, while four reported full agreement.
Participant P5 stated: "For me, this problem is very similar to
incomplete data integration, but there it involves columns, and
here it relates to rows. It’s a similar comment to the one I made
in Incomplete/Insufficient integrating data items correctly. If, by
chance, the most relevant lines are the ones I forgot, this could
potentially become a problem.".
Figure 4.4 illustrates the results from both sessions. Most partici-
pants reported full agreement, leading us to conclude that this issue
can be categorized as highly relevant.

Figure 4.4: Total - Insufficient data consumption

3. Improper data consumption:
In the first session, in both questions, all participants reported
agreeing.
All participants agreed with the first statement about the occur-
rence during the second session. In the second question, one partic-
ipant reported partially agreeing, and four said agreeing.
Participant P8 cited a previous experience: "This has happened to
me. I used a different version of the dataset to compare it with
a model generated from another dataset. In theory, we wanted to
compare models built with the same dataset. When we evaluated the
performance, it was very poor. It wasn’t immediately obvious because
the model was working. I only realized much later when evaluating
the performance by comparing the models because it was very poor.
The comparison with the other model wasn’t a fair one".
Since nearly all participants agreed with both statements and
accordingly by our focus group sessions, we can confidently conclude
that this issue can be classified as high relevance. The results are in
Figure 4.5.



Chapter 4. Assessing and Refining the List of Candidate Issues 34

Figure 4.5: Total - Improper data consumption

As mentioned previously, we presented only the results of the data
collection ML life cycle phase issues above, and all other ML life cycle phase
issues can be found in Appendix A.

4.4
Synthesis of the Results

Table 4.2 provides a comprehensive list of issues that may lead to code-
related TD associated with typical activities throughout the development of
ML-enabled systems. These issues are categorized based on relevance and
occurrence across different ML life cycle phases.

Our study identified 34 potential issues (cf. Table 3.1), then refined to
30 through the focus group sessions. Among these, 24 were deemed highly
relevant, with particular emphasis on the data pre-processing phase, where 14
issues were considered highly relevant.

The results underscore the significance of code-related TD in ML systems,
highlighting challenges such as improper data integration, inaccurate feature
selection, and incorrect identification of missing values and outliers.

4.5
Concluding Remarks

The focus group sessions delved into identifying and assessing potential
code-related TD issues across various stages of the ML life cycle. The par-
ticipants highlighted critical concerns such as improper data integration and
consumption, insufficient data handling, and sub-optimal model training prac-
tices as significant contributors to code-related TD in ML-enabled systems. By
presenting a comprehensive list of these issues and their relevance levels, we
provide valuable insights for practitioners aiming to code-related TD in ML
systems, emphasizing the importance of proactive mitigation strategies. The
next chapter presents a more detailed discussion of the results.



Chapter 4. Assessing and Refining the List of Candidate Issues 35

Table 4.2: Final result

Phase Issue Relevance

Data Collection Improper data integration High

Improper data consumption High

Insufficient data consumption High

Insufficient data integration High

Missing data integration Low

Data pre-processing Inaccurate feature selection High

Inaccurate missing value identification High

Inaccurate outlier detection High

Inaccurate pre-processing scaling High

Incomplete data removal High

Incomplete missing value identification High

Incomplete pre-processing scaling High

Incorrect rebalancing High

Missed features selection High

Missed identification of outliers High

Missed pre-processing scaling High

Not identifying missing values High

Not removing inconsistent data High

Removing inconsistent data inappropri-
ately High

Incomplete feature selection Low

Incomplete outlier identification Low

Missed rebalancing Low

Model creation and
training

Inappropriate splitting of training/test/-
validation data High

Incorrect hyperparameter adjustment High

Neglected splitting training/test/valida-
tion data High

Neglected hyperparameter adjustment High

Neglected testing of candidate algorithm
possibilities High

Insufficient exploration of candidate algo-
rithm options Low

Suboptimal hyperparameter adjustment Low

Model evaluation Suboptimal evaluation metric selection High



5
Discussion

5.1
Introduction

This chapter discusses the outcomes of the focus group sessions. Its
primary aim is to understand critical issues that may arise throughout the
ML system development life cycle, shedding light on their perceived relevance
and practical incidence.

First, we discuss the issues raised in each of the four ML life cycle phases
considered with issues presented to the practitioners. Thereafter, we address
each of the three main research questions. Additionally, we discuss the study’s
limitations and threats to validity.

The analysis presented in this research underscores the complexity and
importance of addressing code-related TD in ML systems. By examining
various phases of the ML life cycle, we identified a spectrum of potential issues
that could contribute to the accumulation of code-related TD, as illustrated
in Table 3.1. Our approach involved conducting two focus group sessions
with nine ML experts to validate their occurrence and relevance. Out of the
34 candidate issues raised, the ML experts narrowed it down to 30 issues
considered significant contributors to code-related TD, which were further
assessed on their relevance.

The results of the four ML life cycle phases with issues presented to the
practitioners are discussed hereafter. Each section presents a summary of the
collected data in the focus group sessions formatted in tables. These tables are
structured with three columns; the first column presents the names of the issues
presented to the participants during the focus group session. These names
are a combination of problem types (e.g., Missing, Incomplete/Insufficient,
or Inappropriate/Wrong) and concise activity descriptions (e.g., consuming
correct data), which were named issue. The second column contains a new
name for the issue to enhance clarity and comprehension. The third column
relates to the relevance of these problems, as discussed in each item. It is
important to mention that the quotes are the transcripts of the comments
from the ML experts extracted from the sessions.



Chapter 5. Discussion 37

5.2
Data Collection Phase

During the data collection phase, we observed that improper data inte-
gration and insufficient consumption could compromise the quality and relia-
bility of resulting ML models. These challenges may arise due to inadequate
planning or negligence in assessing the data quality. Furthermore, the lack
of effective identification and treatment of missing values can distort model
outcomes, leading to erroneous decisions.

There was a debate regarding the importance of proper data integration
during the discussions on the data collection phase. Participant P5 emphasized
this point by providing an illustrative example: “In the context of predictive
models, a lack of data integration can lead to the absence of relevant informa-
tion for the model, hampering the achievement of high accuracy. For example,
in practice, a crucial explanatory column may be missing, undermining the
model’s ability to adequately capture relationships between the available vari-
ables.”

Another significant discussion point was about insufficient data consump-
tion. Participant P3 shared insights from their experience, stating, “I disagree
with this statement because when data arrives incomplete, it is important to
adopt an approach that allows us to handle this gap efficiently. This doesn’t
necessarily lead to TD. It’s more a matter of recognizing the situation and
establishing a policy to address it. It doesn’t need to become a problem auto-
matically.”

Table 5.1 summarizes the final result of the Data Collection Phase.

Table 5.1: Final result for Data Collection

Focus groups issue name Final issue name Relevance
Inappropriate/Wrong consuming
correctly data

Improper data consumption High

Inappropriate/Wrong integrating
correctly data

Improper data integration High

Incomplete/Insufficient consuming
correctly data

Insufficient data consumption High

Incomplete/Insufficient integrating
correctly data

Insufficient data integration High

Missing integrating correctly data Missing data integration Low



Chapter 5. Discussion 38

5.3
Data Pre-Processing Phase

Many issues surfaced in the data pre-processing phase, ranging from fea-
ture selection to outlier detection, rebalancing, and data removal. Participants
emphasized the critical importance of accuracy in these steps to ensure the
quality of input data and, consequently, the effectiveness of ML models. Their
insights shed light on the potential pitfalls and consequences of oversight in
various aspects of data pre-processing.

There were discussions about the importance of identifying outliers to
ensure accurate results, with Participant P3 emphasizing the risks of skipping
this step. He mentioned, “It’s an important step not to skip. Depending on
the model you intend to use, it can significantly affect its outcome, potentially
ruining your results”. However, incomplete or inaccurate outlier identification
was also discussed, with participant P7 highlighting the challenges of revisiting
this stage after model development. He exemplified: “It’s possible to add more
columns even after that stage. For example, if you return to the data collection
phase, you might forget to adapt the code to test the new columns.”

Feature selection emerged as another focal point, with participants’
insights highlighting this process’s iterative nature. Participant P1 underscored
the importance of revisiting feature selection to enhance model performance,
while Participant P5 pondered the potential impacts of incomplete feature
selection. He stated, “Most feature selection is already performed by most ML
algorithms by design, so not doing it is not necessarily a problem.”

These conversations underscored the complexity of data pre-processing in
ML model development and the need for careful approaches to avoid potential
code-related problems.

Table 5.2 summarizes the final result of the Data Pre-Processing Phase.

5.4
Model Creation and Training Phase

When creating and training ML models, we emphasized the importance of
proper division of training, testing, and validation datasets and careful hyper-
parameter tuning. Errors at these stages can lead to underfitted or overfitted
models, undermining their ability to generalize to new data. Additionally, the
lack of adequate testing of candidate algorithms can result in the selection of
sub-optimal models.

Participants discussed various issues in this phase, including neglected
testing of candidate algorithm possibilities. Participant P7 highlighted scenar-
ios where outstanding initial results might lead to the neglect of exploring



Chapter 5. Discussion 39

Table 5.2: Final result for Data Pre-processing

Focus groups issue name Final issue name Relevance
Incomplete/Insufficient identifying
missing values

Incomplete missing value identifi-
cation

High

Incomplete/Insufficient pre-
processing scaling

Incomplete pre-processing scaling High

Incomplete/Insufficient removing
inconsistent data

Incomplete data removal High

Inappropriate/Wrong identifying
missing values

Inaccurate missing value identifica-
tion

High

Inappropriate/Wrong identifying
outliers

Inaccurate outlier detection High

Inappropriate/Wrong pre-
processing scaling

Inaccurate pre-processing scaling High

Inappropriate/Wrong rebalancing Incorrect rebalancing High

Inappropriate/Wrong removing in-
consistent data

Removing inconsistent data inap-
propriately

High

Inappropriate/Wrong selecting fea-
tures when needed

Inaccurate feature selection High

Missing identifying missing values Not identifying missing values High

Missing identifying outliers Missed identification of outliers High

Missing pre-processing scaling Missed pre-processing scaling High

Missing removing inconsistent data Not removing inconsistent data High

Missing selecting features when
needed

Missed features selection High

Incomplete/Insufficient identifying
outliers

Incomplete outlier identification Low

Incomplete/Insufficient selecting
features when needed

Incomplete feature selection Low

Missing rebalancing Missed rebalancing Low

other algorithm options. Similarly, insufficient exploration of candidate algo-
rithms was mentioned, with participant P5 emphasizing the need to prioritize
the most relevant algorithms given the limitations of testing all possibilities.
These discussions underscored the importance of thorough exploration to iden-
tify the most suitable algorithms for the given problem.

Furthermore, issues related to splitting training, testing, and validation
data were addressed. Neglecting this division was deemed highly relevant,
with Participant P3 stating, “It doesn’t make much sense to a data scientist.
It is a basic premise.” Inappropriate data splitting, especially in time series
analysis, was also highlighted as a significant concern. Participant P3 provided
an example illustrating how random data splitting could compromise the
essence of time series data analysis. These comments emphasized the need for



Chapter 5. Discussion 40

careful consideration of data-splitting methods to preserve essential patterns
and behaviors in the data.

Table 5.3 summarizes the final result of the Model Creation and Training
Phase.

Table 5.3: Final result for Model Creation and Training

Focus groups issue name Final issue name Relevance
Inappropriate/Wrong hyperpa-
rameter tuning

Incorrect hyperparameter adjust-
ment

High

Inappropriate/Wrong splitting
training/test/validation data

Inappropriate splitting of train-
ing/test/validation data

High

Missing hyperparameter tuning Neglected hyperparameter adjust-
ment

High

Missing splitting training/test/-
validation data

Neglected splitting training/test/-
validation data

High

Missing testing of candidate algo-
rithm possibilities

Neglected testing of candidate al-
gorithm possibilities

High

Incomplete/Insufficient hyperpa-
rameter tuning

Suboptimal hyperparameter ad-
justment

Low

Incomplete/Insufficient testing of
candidate algorithm possibilities

Insufficient exploration of candi-
date algorithm options

Low

5.5
Model Evaluation Phase

In the model evaluation phase, the need to select appropriate evaluation
metrics that accurately capture the model’s performance against project
objectives was shown. Inappropriate metrics can lead to misconceptions about
the model’s effectiveness and erroneous or sub-optimal decisions.

For instance, suboptimal evaluation metric selection can result in insuf-
ficient metrics that fail to provide adequate insights into model performance.
Participant P1 highlighted this issue by presenting an example of an alarm
system where using the wrong metric could lead to overlooking critical as-
pects. Similarly, inappropriate or wrong selection of evaluation metrics can
further exacerbate this problem, potentially leading to unsuitable assessments
of model performance. Participant P4 provided an example of using a regres-
sion metric to evaluate a classification problem, illustrating the misalignment
between the chosen metric and the problem type.

Ultimately, the discussions underscored the importance of aligning eval-
uation metrics with project objectives to ensure accurate assessments of model
performance and informed decision-making.

Table 5.4 summarizes the final result of the Model Evaluation Phase.



Chapter 5. Discussion 41

Table 5.4: Final result for Model Evaluation

Focus groups issue name Final issue name Relevance

Incomplete/Insufficient choosing evalu-
ation metric

Suboptimal evaluation metric
selection

High

In short, our research shows it’s important to deal with code-related TD
issues throughout the ML process. We must manage our data well, plan care-
fully, and test our models thoroughly to ensure they work properly in real
situations. Addressing these issues early in the development cycle and imple-
menting robust TD management strategies can strengthen the reliability and
efficiency of ML applications, fostering greater trust and usability across vari-
ous domains. Furthermore, the outcomes of this study lay the groundwork for
further research into tailored TD mitigation approaches, ultimately advancing
the reliability and effectiveness of ML applications in real-world settings.

5.6
RQ1. What are potential issues that could lead to ML code TD?

To address this question, Table 3.1 which maps fourteen key activities
along the ML system life cycle phases. These activities are typical tasks that
developers may execute during routine tasks throughout the life cycle of an
ML system. Associating them with problem types (Missing, Incomplete/In-
sufficient, Inappropriate/Wrong). It resulted in 34 identified candidate issues.
Some specific issues, such as emphIncomplete/Insufficient rebalancing, were
excluded from the final list due to lack of practicality.

No ML code-related issues were identified in the Problem Understanding
and Requirements, Model Deployment, and Model Monitoring phases.

5.7
RQ2. Do the identified issues occur in practice?

To assess whether the issues occur in practice, we conducted two focus
group sessions with nine experts (4 in the first and 5 in the second). This was
done to assess each issue’s occurrence and evaluate its relevance. According to
the ML experts, a total of 30 out of the 34 potential issues were considered to
occur in practice and potentially lead to TD.

Find in 4.4 the synthesis of results.



Chapter 5. Discussion 42

5.8
RQ3. Are the issues perceived as relevant by practitioners in terms of
leading to TD?

Overall, 24 out of the 30 issues that occur in practice and may lead
to technical debt were perceived as highly relevant. Figure 5.1 illustrates the
number of issues per ML life cycle phase, and Figure 5.2 summarizes these
numbers.

Figure 5.1: Heat map of numbers of issues per phase

High: 4

Data collection

Low: 1
High: 14

Data pre-processing

Low: 3
High: 5

Model creation and training

Low: 2
High: 1

Model evaluation

Low: -

Figure 5.2: Number of issues per phase

It is possible to observe that, during the data collection phase, four of
the five issues that can lead to code-related TD in the focus group sessions
were designated as high-relevance, and one was classified as low-relevance. In
the data pre-processing phase, 14 of the 17 issues identified were established
high relevant, while the remaining three were categorized as low relevant. In
the model creation and training phase, seven issues were split into five high-
relevant and two low-relevant categories. Lastly, the sole issue identified in the
model evaluation phase was highly relevant.

5.9
Limitations and Threats to Validity

One limitation of our study is the possibility of unintentionally omitting
critical ML code-related issues not addressed in our initial list (Table 3.1).

In this line, participants indicated the absence of certain issues during
both focus group sessions. In the first session, they specifically mentioned topics
such as model deployment and consumption, service orchestration, package
versioning, and package dependencies, which could contribute to ML code
TD. In the second session, they mentioned issues such as incorrect model
finalization for production preparation (failure to train with all data) and
failure to normalize required data during model usage in production.



Chapter 5. Discussion 43

A possible threat to validity is the potential for majority influence
during discussions, wherein a participant may be swayed by the majority
vote in moments of doubt. To mitigate the potential impacts of this threat,
we conducted two independent sessions, selected qualified professionals, and
moderated and recorded the sessions.

Another threat to validity concerns the number of participants and the
number of focus group sessions. Notably, it is suggested to plan online focus
groups with fewer participants than face-to-face focus groups (MENARY et al.,
2021), with four considered appropriate (MATTHEWS; BAIRD; DUCHESNE,
2018). Considering this, we organized our two focus group sessions with
four and five participants, respectively. Still, we know that more than two
focus group sessions are needed to reach generalizable findings. Unfortunately,
identifying teams with experience and willing to collaborate with academia is
not a trivial task. Therefore, conducting new focus group sessions is part of
future work.

5.10
Concluding Remarks

This chapter discussed the outcomes of our study, which focused on
evaluating potential issues leading to code-related TD in ML-enabled systems.
The validation process, conducted through two focus group sessions, provided
valuable insights into the occurrence and relevance of these issues. We discussed
the results for each ML life cycle phase. Additionally, we addressed the
three research questions of this dissertation, shedding light on the systematic
identification, practical occurrence, and perceived relevance of these issues by
practitioners. Furthermore, we discussed the limitations and threats to validity,
offering valuable considerations for future research endeavors.



6
Conclusion

6.1
Contributions

Sculley et al. (SCULLEY et al., 2015) shed light on the relationship be-
tween TD and ML-enabled systems. Bogner et al. (BOGNER; VERDECCHIA;
GEROSTATHOPOULOS, 2021) identified four new types of TD that emerge
in AI-based systems. Additionally, Tang et al. (TANG et al., 2021) introduced
seven distinct TD categories relevant to ML, focusing on custom data types.
However, substantial research gaps exist in identifying issues that lead to TD
in ML code.

This study compiled and assessed a list of potential issues that can lead to
code-related TD in each ML system life cycle phase. The methodology involved
establishing a list of issues related to typical activities during the ML life cycle
phases and assessing their occurrence and relevance through industry feedback
in focus group sessions. This comprehensive approach provided a nuanced and
insightful understanding of relevant issues leading to code-related TD in ML
systems.

Throughout the study, a list of 34 potential issues that could lead to
code-related TD in ML systems was compiled. These issues were refined into 30
consolidated issues through focus group sessions. It’s worth noting that during
the data pre-processing phase, 17 issues were identified, with 14 considered
highly relevant. In the data collection phase, four issues were identified as
highly relevant. The model creation and training phase revealed five highly
relevant issues and one highly relevant in the model evaluation phase.

Hence, the data pre-processing phase was the most critical one, deserving
particular attention to avoid ML code TD. We believe that the compiled list
can help to raise awareness of issues to be addressed throughout the ML life
cycle to minimize TD, helping to improve the maintainability of ML systems.

6.2
Future Work

While this study focuses exclusively on ML code-related TD, we acknowl-
edge the existence of other forms of TD that are also relevant to ML systems.
Therefore, additional studies could be conducted focusing on these other forms
of TD. Furthermore, in this dissertation, we focused on quantitative and qual-



Chapter 6. Conclusion 45

itative analyses. A new study focused on a more in-depth qualitative analysis
could bring additional insights.

Furthermore, our investigations of the issues leading to ML code-related
TD involved conducting two focus group sessions. Additional investigations
using other empirical strategies (e.g., experimental studies) could be conducted
to refine the list further and strengthen our findings.



7
Bibliography

ALVES, A. P. S. et al. Status quo and problems of requirements engineer-
ing for machine learning: Results from an international survey. In: Product-
Focused Software Process Improvement - 24th International Con-
ference, PROFES 2023, Dornbirn, Austria, December 10-13, 2023.
Proceedings. [S.l.: s.n.], 2023. p. 1–16.

ALVES, N. S. et al. Towards an ontology of terms on technical debt. In: 2014
Sixth International Workshop on Managing Technical Debt. [S.l.: s.n.],
2014. p. 1–7.

AMERSHI, S. et al. Software engineering for machine learning: A case study.
In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). [S.l.:
s.n.], 2019. p. 291–300.

BASILI, V.; ROMBACH, H. The tame project: towards improvement-oriented
software environments. IEEE Transactions on Software Engineering,
v. 14, n. 6, p. 758–773, 1988.

BOGNER, J.; VERDECCHIA, R.; GEROSTATHOPOULOS, I. Characteriz-
ing technical debt and antipatterns in AI-based systems: A systematic mapping
study. In: 2021 IEEE/ACM International Conference on Technical
Debt (TechDebt). IEEE, 2021. Disponível em: <https://doi.org/10.1109%
2Ftechdebt52882.2021.00016>.

CABRAL, R. et al. Investigating the impact of solid design principles on ma-
chine learning code understanding. In: Proceedings of the 3rd Interna-
tional Conference on AI Engineering – Software Engineering for AI,
CAIN 2024, Lisbon, Portugal, April 14-15. [S.l.: s.n.], 2024. p. 1–11.

CHAPMAN, P. et al. Crisp-dm 1.0: Step-by-step data mining guide. In: . [S.l.:
s.n.], 2000.

CUNNINGHAM, W. The wycash portfolio management system. SIGPLAN
OOPS Mess., Association for Computing Machinery, New York, NY, USA,
v. 4, n. 2, p. 29–30, dec 1992. ISSN 1055-6400. Disponível em: <https:
//doi.org/10.1145/157710.157715>.

IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009
(Revision of IEEE Std 1044-1993), p. 1–23, 2010.

KALINOWSKI, M. et al. Engenharia de Software para Ciência de
Dados: Um guia de boas práticas com ênfase na construção de
sistemas de Machine Learning em Python. [S.l.]: Casa do Código, 2023.
1-476 p.

https://doi.org/10.1109%2Ftechdebt52882.2021.00016
https://doi.org/10.1109%2Ftechdebt52882.2021.00016
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/157710.157715


Chapter 7. Bibliography 47

KONTIO, J.; BRAGGE, J.; LEHTOLA, L. The focus group method as
an empirical tool in software engineering. In: . Guide to Advanced
Empirical Software Engineering. London: Springer London, 2008. p.
93–116. ISBN 978-1-84800-044-5. Disponível em: <https://doi.org/10.1007/
978-1-84800-044-5_4>.

LI, Z.; AVGERIOU, P.; LIANG, P. A systematic mapping study on technical
debt and its management. Journal of Systems and Software, v. 101, p.
193–220, 2015. ISSN 0164-1212. Disponível em: <https://www.sciencedirect.
com/science/article/pii/S0164121214002854>.

MARTINEZ, I.; VILES, E.; OLAIZOLA, I. Data science methodologies:
Current challenges and future approaches. Big Data Research, v. 24, p.
100183, 01 2021.

MATTHEWS, K. L.; BAIRD, M.; DUCHESNE, G. Using online meet-
ing software to facilitate geographically dispersed focus groups for health
workforce research. Qualitative Health Research, v. 28, n. 10, p. 1621–
1628, 2018. PMID: 29911490. Disponível em: <https://doi.org/10.1177/
1049732318782167>.

MENARY, J. et al. Going virtual: Adapting in-person interac-
tive focus groups to the online environment. Emerald Open Re-
search, v. 3, n. 6, 2021. Cited by: 13. Disponível em: <https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-85111393492&partnerID=
40&md5=8a45d831e50e0b8cc65bc8e7e3cc56cf>.

PIMENTEL, J. F. et al. A large-scale study about quality and reproducibil-
ity of jupyter notebooks. In: 2019 IEEE/ACM 16th International Con-
ference on Mining Software Repositories (MSR). [S.l.: s.n.], 2019. p.
507–517.

SCULLEY, D. et al. Hidden technical debt in machine learning systems.
In: Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2. Cambridge, MA, USA:
MIT Press, 2015. (NIPS’15), p. 2503–2511.

TANG, Y. et al. An empirical study of refactorings and technical debt
in machine learning systems. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). [S.l.: s.n.], 2021. p. 238–
250.

TOM, E.; AURUM, A.; VIDGEN, R. An exploration of technical debt.
Journal of Systems and Software, v. 86, n. 6, p. 1498–1516, 2013. ISSN
0164-1212. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S0164121213000022>.

ZIMELEWICZ, E. et al. Ml-enabled systems model deployment and monitor-
ing: Status quo and problems. In: Software Quality Days, 16th Interna-
tional Conference, SWQD 2024, Vienna, Austria, April 24-25. [S.l.:
s.n.], 2024. p. 1–20.

https://doi.org/10.1007/978-1-84800-044-5_4
https://doi.org/10.1007/978-1-84800-044-5_4
https://www.sciencedirect.com/science/article/pii/S0164121214002854
https://www.sciencedirect.com/science/article/pii/S0164121214002854
https://doi.org/10.1177/1049732318782167
https://doi.org/10.1177/1049732318782167
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111393492&partnerID=40&md5=8a45d831e50e0b8cc65bc8e7e3cc56cf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111393492&partnerID=40&md5=8a45d831e50e0b8cc65bc8e7e3cc56cf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111393492&partnerID=40&md5=8a45d831e50e0b8cc65bc8e7e3cc56cf
https://www.sciencedirect.com/science/article/pii/S0164121213000022
https://www.sciencedirect.com/science/article/pii/S0164121213000022


A
Appendix

The results of the data collection phase can be analyzed in session 4.
Herein, the results of other phases can be found, as previously mentioned.

A.1
Issues of the Data Pre-processing ML Life Cycle Phase

– Identification of outliers - Example: An outlier is an observation
that significantly deviates from the typical or expected values within
a random sample from a population. These atypical observations can
be either unusually high (positive outliers) or unusually low (negative
outliers) compared to most data points in the sample. Outliers can distort
statistical analyses and may indicate potential errors or interesting
patterns in the data. Identifying and handling outliers is an important
step in data analysis to ensure the accuracy and reliability of your results.

1. Missed identification of outliers:
In the first question, regarding the occurrence, all participants
reported agreeing. Regarding relevance, two participants reported
partial agreement in the second question, and two said they agreed.
Participant P3, referring to one of the previous issues, "Missing
consuming data correctly", where it was emphasized that skipping
is not advisable, mentioning that one might consider cutting it
to save time, thinking it wouldn’t significantly impact and, for
instance, skipping the step of searching for outliers to build the
model more quickly. However, this is quite serious because it can
greatly influence the results. P3 said: "It’s not a good step to miss.
Depending on the model you intend to use, it can significantly affect
its outcome, potentially ruining your results. You deal with later
stages, trying to improve when the error was in the step you skipped.
I mentioned that it could be a serious issue".
In the second session, in the first question, one participant reported
partially agreeing, and four agreed. In the second question, two
participants reported partially agreeing, and three said agreeing.
Figure A.1 shows that despite not having unanimous agreement
regarding its existence and relevance in both sessions, we can
categorize this issue as highly relevant.



Appendix A. Appendix 49

Figure A.1: Total - Missed identification of outliers

2. Incomplete outlier identification:
In the first session, all participants agreed on the question about
occurrence. Regarding the question about relevance, all participants
reported partially agreeing.
In the second session, the first question regarding occurrence, one
participant reported partially agreeing, and four agreed. In the
second question, regarding relevance, two participants reported
partially agreeing, and three said agreeing.
Participant P7 exemplified: "It’s possible to add more columns even
after that stage. For example, if you return to the data collection
phase, you might forget to adapt the code to test the new columns".
Figure A.2 summarizes the consensus between the two sessions,
making this issue less relevant.

Figure A.2: Total - Incomplete outlier identification

3. Inaccurate outlier detection:
All participants agreed on the first question about occurrence in
the first session. In the second question, regarding relevance, one
participant reported partially agreeing, and three said agreeing.
During the second session, all participants unanimously agreed with
both questions.
Participant P6 provided feedback on your interpretation of this
matter: "An example of this situation would involve considering
an extended timeline. At a certain point, there was a shift in the
behavior of the data, causing it to deviate from the established
standard range. Consequently, we excluded this data, even though



Appendix A. Appendix 50

it merely represented a change in data behavior and should not have
been classified as outliers".
Figure A.3 shows the consensus between the two sessions in affirm-
ing the significance of this issue as highly relevant.

Figure A.3: Total - Inaccurate outlier detection

– Selecting features when needed - Example: Feature selection is
a crucial technique that carefully chooses a subset of input variables
for your model while retaining only the most relevant information and
eliminating noisy or less important data. This process enhances model
performance and clarity.

1. Missed features selection:
In the first session, all participants reported to agree in the first
question. In the second question, all participants reported agreeing.
In the second session, the question about occurrence, two partici-
pants reported partially disagreeing, one not sure, and two agreeing.
Regarding the question about relevance, two participants reported
agreeing, and three were not sure.
Participant P5 stated: "Most feature selection is already performed
by most ML algorithms by design, so not doing it is not necessarily
a problem. On the other hand, there are performance concerns. In
requirements engineering, unmet non-functional requirements can
be more problematic than those. For instance, if the application
becomes too slow, it may not be used, and in this case, it can be
a significant issue".
Despite a divided vote, with some participants marking "not sure"
for both questions, the prevailing sentiment is that this issue can
be classified as highly relevant. This outcome is further illustrated
in Figure A.4.



Appendix A. Appendix 51

Figure A.4: Total - Missed features selection

2. Incomplete feature selection:
In the first session, all participants reported agreeing partially on
the question regarding occurrence. Regarding the question about
relevance, one participant reported partially disagreeing, and three
reported partially agreeing.
Participant P1 mentioned that "Incomplete, to me, means the
following: I have various approaches to feature selection. In the
project I am working on, it’s common for us to quickly create an
initial version of the model to deliver it. Later, we refined and
adjusted this model as we gained more knowledge about the problem.
This can happen through data analysis or discussions with experts
in the problem domain. There are several stages involved, and this
constitutes a cycle.
Sometimes, we backtrack and discover that we have more data that
wasn’t provided to us previously. Within these stages of feature
selection, one of them is especially important. We start with a
specific selection and build a solid model. Then, we evaluate another
selection that makes sense, analyze the importance of variables, and
remove some of them to improve the models. This is done to expedite
the initial delivery and then evolve from there.
The key point is that, in certain cases, people may not realize that the
initial approach was insufficient, and later on, it may be necessary
to revisit this stage to enhance the model".
Participant P3 said: "I think ’incomplete’ is a business decision, de-
pending on whether it’s worth investing more time in improvements
or if the result is satisfactory enough. Not executing is a problem.
The results of doing incomplete could probably improve later. Doing
something wrong is always an issue, such as, for example, excluding
an important variable."
During the second session, in both questions, two participants
reported partial agreement, one agreed, and two reported being
unsure.



Appendix A. Appendix 52

Based on the findings from the two focus group sessions, shown in
Figure A.5, this issue can be categorized as low relevant as most
voters cast partially agree votes.

Figure A.5: Total - Incomplete feature selection

3. Inaccurate feature selection:
In both sessions and questions, all participants reported agreeing.
Participant P1 mentioned that "Visualizing and identifying the
problem can be challenging; it often requires time for debugging and
comprehension." Participant P3 affirmed the previous comment:
"This happened to me when the variables had similar names. One
ended in ’31,’ and I mistakenly used the one ending in ’33.’ I spent
quite some time trying to figure out why my model wasn’t producing
coherent results. It was frustrating"
In the second session, Participant P6 shared an experience: "This
happened to me while working on a model. We had a variable for
which we were missing data for an extended period, resulting in
the loss of half of the information. We decided to remove this
variable for that reason. However, when we presented the model
to the stakeholders, we discovered that this variable was the most
crucial".
Participant P5 agreed and added another example: " I’ve seen this
happen before. We had around 150 columns, and we would ask
the stakeholders to determine which ones were important. Still,
we performed a preliminary cleanup to ensure they got all the
information. However, during this cleanup, we removed about 100
columns. Out of those 100 pulled, approximately 30 of them should
have been kept. We were trying to help but ended up causing more
harm than good".
Figure A.6 depicts unanimous agreement between the two sessions
regarding the occurrence and relevance of this issue as highly
relevant.



Appendix A. Appendix 53

Figure A.6: Total - Inaccurate feature selection

– Identifying missing values - Example: Missing data refers to the
absence of values or information for certain variables within a given
dataset.

Participant P1 provided an illustrative example of a typical approach
when dealing with this topic before the participants of the first session
started to discuss the first issue: "For instance, in the context of a
regression problem, it’s common practice to perform a process known as
form filling, if the project’ schedule permits. This often arises when there
are numerous gaps in the dataset. However, in certain situations where
we are confident that a specific variable remains relatively stable over a
given time frame, we can propagate the preceding value as a solution".

1. Not identifying missing values:
In the first session, regarding the question about occurrence, three
participants reported partially disagreeing, and one wrote partially
agreeing. Regarding the question about relevance, one participant
reported disagreeing, and three reported partially disagreeing.
Participant P2 stated: "When confronted with missing data mis-
takes, you typically have two scenarios: leave it unaddressed (miss-
ing) or handle it incorrectly. Rarely do you manage it incompletely".
Participant P3 stated: "It has happened to me that we needed to
create a model, and I tried to do it, skipping this step. I had to
backtrack because I couldn’t progress, and I stopped. Therefore, in
this sense, no TD was generated because it was not completed; hence,
it does not fall into the category of TD".
In the case of this proposed issue, all participants agreed unani-
mously on both questions in the second session.
Despite the diversity of the votes, the median leads us to conclude
that this issue can be considered highly relevant, as shown in Figure
A.7.



Appendix A. Appendix 54

Figure A.7: Total - Not identifying missing values

2. Incomplete missing value identification:
In the first session, the first question, two participants reported
disagreeing, and two reported partially agreeing. In the second
question, two participants disagreed, and two reported partially
agreeing.
In the second session, all participants agreed on both questions.
Participant P5 emphasized: "Overall, a problem resulting from a
step performed incompletely is challenging to identify because it can
give the impression that it was both done and not done. In this
case, perhaps pair programming can be helpful, as your partner may
be able to spot this issue more easily. Having a checklist of steps is
also very helpful".
Participant P7 exemplified: "Another example would be when values
of 0 are considered empty, but in some cells, the value is -1, which
has also been treated as empty. Addressing only the 0 values and not
handling the -1 would be an incomplete approach".
In this focus group session, based on the data presented in Figure
A.8, it is reasonable to categorize this issue as highly relevant.

Figure A.8: Total - Incomplete missing value identification

3. Inaccurate missing value identification:
In the first session, in both questions, all participants reported
agreeing.
Participant P1 expressed: "Usually when you encounter problems,
you start looking at the end of the whole process. You ques-
tion whether the model is performing well, if the model’s hyper-
parameters are properly tuned, and if the chosen technique is the



Appendix A. Appendix 55

best option. Having to go back to the pre-processing stage can be
quite challenging. So, any incorrect step in the pre-processing phase
that needs correction should be taken seriously, as it can have seri-
ous repercussions".
Participant P2 affirmed what P1 said: "The issue here is that
processes are functional, which means things are working; however,
the outcomes achieved are not optimal, and it’s challenging to
identify the root causes precisely".
Participant P3 said: "Imagine a form which primarily accepts text
inputs. For instance, in the address field, someone entered "none."
While there is no missing data, the provided value seems irrelevant.
It would have been important to recognize and address this inconsis-
tency, which was disregarded".
In the second session, in both questions, all participants reported
agreeing.
All possible votes were in complete agreement regarding the occur-
rence and its relevance, and this issue can be categorized as highly
relevant, as shown in Figure A.9.

Figure A.9: Total - Inaccurate missing value identification

– Rebalancing (typically by resampling) - Example: Resampling is
a technique that entails iteratively drawing samples from the training
dataset, which can be done to address issues like imbalanced data or to
improve the robustness of a machine learning model.

1. Missed rebalancing (typically by resampling):
In the first session, all participants reported partially agreeing with
both questions.
In the second session, four participants reported agreeing, and one
was unsure about the first question. Three participants reported
partially agreeing, and two agreed with the second question.
Participant P7 argued: "Depending on the dataset, this may not be
such a relevant issue".



Appendix A. Appendix 56

Participant P5 completed saying: "If you don’t perform resampling
but use appropriate evaluation metrics, it may not be considered as
a TD.".
Although there is divergence regarding the severity of occurrence
and relevance, to some degree, all voters agreed that this issue is
low relevant, as shown in Figure A.10.

Figure A.10: Total- Missed rebalancing (typically by resampling)

2. Incorrect rebalancing:
One participant reported partially agreeing in the first session, and
three agreed with the first question. One participant reported par-
tially disagreeing, two reported partially agreeing, and one agreed
with the second question.
Participant P1 remarked: "Upon recognizing the error, it becomes
necessary to revisit the data distribution and conduct an exploratory
analysis. It’s crucial to understand why no results are being found,
especially when limited data of this type is available for training. In
other words, there’s an investigation needed to discover the error.
Debugging is always a bit frustrating.".
In the second session, all participants agreed on both questions.
Participant P5 concluded: "It can significantly result in generating
incorrect data for training".
The final result can be analyzed in Figure A.11, and as a result,
in these focus group sessions, this issue can be classified as highly
relevant.

Figure A.11: Total - Incorrect rebalancing

– Removing inconsistent data (remove the inconsistency) - Exam-
ple: Initial text pre-processing includes tasks such as eliminating white



Appendix A. Appendix 57

spaces and standardizing capitalization to address inconsistencies in the
text data.

1. Not removing inconsistent data:
In the first session, in the first question, all participants reported
partially agreeing. Three participants reported partially agreeing
with the second question, and one said agreeing.
Participant P1 mentioned a previous experience: "In one of the
projects, a situation arose where, following the technical manual,
values were identified that didn’t make sense when the variables were
analyzed together. It was necessary to perform a manual analysis to
address this inconsistency, as it couldn’t be resolved through code.
An expert in the domain had to alter the data directly".
In the second session, all participants unanimously agreed on both
questions.
Participant P5 provided an example related to image recognition:
"This issue won’t lead to coding rework but will necessitate redoing
all the training steps. Consider, for example, if you’re working with
images, and a single training cycle takes five days. If you overlook
this step, intentionally or unintentionally, you’ll have to undergo
the entire training process again, which could pose a substantial
problem".
The outcome can be analyzed using Figure A.12, providing consis-
tency to assert that this issue can be classified as highly relevant.

Figure A.12: Total - Not removing inconsistent data

2. Incomplete data removal:
In the first session, three participants reported partially agreeing,
and one said agreeing in the first question. All participants reported
partially agreeing with the second question.
During the second session, all participants voted in agreement on
both questions.
Participant P5 exemplified this item: "I have an interesting example
of a diabetes dataset I’ve worked with. In this dataset, when values



Appendix A. Appendix 58

are missing, or columns are blank, they are filled with zeros. How-
ever, if you’re unfamiliar with what each column represents, this can
lead to misinterpretations. For instance, consider a column repre-
senting blood pressure; it’s clear that a blood pressure of zero doesn’t
make sense. Imagine someone unfamiliar with the medical specifics,
assuming zero is a valid value for blood pressure. This underscores
the importance of deeply understanding the domain of the data you
are working with".
Total outcome refers to Figure A.13 for a detailed analysis. Based
on this, we can categorize it as highly relevant.

Figure A.13: Total - Incomplete data removal

3. Removing inconsistent data inappropriately:
In the first session, regarding the question about occurrence, two
participants reported partially agreeing, and two said agreeing.
Regarding the question about relevance, all participants reported
agreeing.
In the second session, all participants agreed on both questions.
Participant P5 made a brief comment: "This scenario is quite
problematic, as the improper removal of inconsistent data can lead
to the loss of critical information for training".
This issue can be categorized as highly relevant since all participants
agreed on its relevance. For a more comprehensive analysis of the
overall results, follow Figure A.14.

Figure A.14: Total - Removing inconsistent data inappropriately

– Pre-processing scaling - Example: For instance, employing normal-
ization, standardization, and logarithmic transformation.



Appendix A. Appendix 59

1. Missed pre-processing scaling (e.g., normalization, stan-
dardization, logarithmic transformation):
In the first session, in the first question, three participants reported
partially agreeing, and one said agreeing. In the second question,
two participants reported partially disagreeing, one partially agree-
ing, and one agreeing.
At this point, Participant P2 argued: "I realize that identifying TD
in experimentation activities is quite abstract, mainly because there’s
always room for improvement. Even reaching an optimal solution
is possible, but it’s legitimate to question why we tested only two
possibilities. Why didn’t we test three, four, or as many possibilities?
It’s more about an opportunity for improvement".
Participant P1 continued saying "Exactly, it’s an opportunity for
improvement, and there is a limit to how much you should keep
trying to enhance it. What’s important is to consider the cost-benefit
of continuing to invest in it".
In the second session, all participants unanimously agreed on both
questions.
A more in-depth analysis of the final result in Figure A.15 high-
lights that, although there may be differing opinions regarding its
relevance, there is no question about its occurrence. Based on that,
we can categorize this issue as highly relevant.

Figure A.15: Total - Missed pre-processing scaling

2. Incomplete pre-processing scaling (e.g., normalization,
standardization, logarithmic transformation):
All participants reported partially agreeing with the first question
in the first session. Two participants reported partially disagreeing,
and two partially agreeing with the second question.
In the second session, all participants unanimously agreed on both
questions.
Participant P5 said: "You don’t necessarily need to normalize all
numeric columns. You can choose to normalize just a few. For ex-



Appendix A. Appendix 60

ample, you might normalize a salary column with a wide range of
values while leaving others unnormalized. However, if you acciden-
tally overlook the column that should be normalized, it can lead to
poor results, and you might mistakenly believe that you have the best
possible model".
A more detailed examination of the outcome in Figure A.16 reveals
that, despite differing opinions on its relevance, there is no doubt
about its occurrence. We can categorize it as highly relevant using
the median.

Figure A.16: Total - Incomplete pre-processing scaling

3. Inaccurate pre-processing scaling (e.g., normalization,
standardization, logarithmic transformation):
In the first session, in both questions, all participants reported
agreeing.
Participant P1 gave an example: "A simple example of incorrect
scaling is to apply it to the training set, and then apply it incorrectly
to the test set. This is quite wrong and a common example. Another
example is applying one approach to the training set and a different
one to the test set or swapping columns and rows".
One participant reported partial agreement in the second session,
while four fully agreed in the first question. Similarly, one partici-
pant reported partial agreement for the second question, and four
fully agreed.
Participant P5 said: "In an example where, instead of standardiza-
tion, normalization was applied, machine learning algorithms have
mechanisms to identify associations, which can mitigate problems.
Although this is not the most appropriate approach (normalizing
instead of standardizing), it is at least addressed in some way. Doc-
umenting the decisions you make is always a good practice, as it can
facilitate the process if, by any chance, you need to return to this
stage".
There is nearly unanimous consensus regarding its existence and
relevance. For a more detailed examination of the final results,



Appendix A. Appendix 61

please consult Figure A.17. We can categorize this issue as highly
relevant based on these facts.

Figure A.17: Total - Inaccurate pre-processing scaling

A.2
Issues of the Model Creation and Training ML Life Cycle Phase

– Testing candidate algorithm possibilities - Example: For Classifi-
cation, regression, clustering, and association algorithms.

1. Neglected testing of candidate algorithm possibilities:
In the first session, in the first question, three participants reported
partially agreeing, and one said agreeing. In the relevance question,
one participant reported partially agreeing, and three reported
agreeing.
In the second session, all participants agreed on both questions.
Participant P7 said: "An example that comes to mind in this regard
is when someone achieves such an outstanding result right from the
start that they don’t explore other possibilities".
The final results depicted in Figure A.18 unmistakably establish
that this issue, in alignment with these focus group sessions, can be
classified as highly relevant.

Figure A.18: Total - Neglected testing of candidate algorithm possibilities

2. Insufficient exploration of candidate algorithm options:
In the first session, the first question, two participants reported
partially agreeing, and two said agreeing. In the second question,
two participants reported partially disagreeing, and two reported
partially agreeing.



Appendix A. Appendix 62

In the second session, three participants reported partially agreeing,
and two agreed with both questions.
Participant P5 explained your perspective: "It’s important to re-
member that the incomplete approach should be used cautiously be-
cause it’s impossible to test all existing algorithms, many of which
may not even be known. In this context, incompleteness is an inher-
ent limitation, and it’s essential to prioritize the most relevant and
suitable algorithms for the given problem. The choice of algorithms
to be tested depends on various factors, such as the available time
and your familiarity with the algorithms".
In terms of occurrence, there is consensus. However, regarding
relevance, it is clear that this issue has low relevance. This low
priority may be explained by the comment made by participant P5,
who mentioned that testing candidate algorithms will always be
insufficient. Figure A.19 illustrates the result.

Figure A.19: Total - Insufficient exploration of candidate algorithm options

3. Inappropriate/Wrong exploration of candidate algorithm
options:
In the first session, the first question, one participant reported dis-
agreeing, and three reported being unsure. In the second question,
regarding relevance, all participants reported being unsure.
In the second session, both questions yielded identical results: two
participants reported partial agreement, while three fully agreed.
Participant P5 stated: "Handling it inappropriately can lead to a
more complex code, but it’s likely that the final result won’t be
significantly compromised".
Many participants marked "not sure" regarding the occurrence and
relevance in the first session, suggesting we can rule out this issue.
Furthermore, the partial agreement of two voters in the second
session, both in terms of occurrence and relevance, reinforces this
conclusion.



Appendix A. Appendix 63

– Splitting training/test/validation data - Example: Training data
selection, holdout

1. Neglected splitting training/test/validation data
In the first session, in the question regarding occurrence, two
participants reported partially disagreeing, one reported partially
agreeing, and one said agreeing. In the relevance question, all
reported agreeing.
Participant P3 said: "It doesn’t make much sense to a data scientist
(missing case). It is a basic premise. I don’t see this happening.
People usually don’t forget to perform the data split, and if there is
an error in the split, such as data leakage from the training set to
the test set, that would be a case of inappropriateness".
Both questions yielded identical results in the second session: all
participants reported agreement.
Figure A.20 suggests that, based on both sessions, this issue can be
categorized as highly relevant despite some partial disagreements
related to its occurrence.

Figure A.20: Total - Neglected splitting training/test/validation data

2. Inappropriate splitting of training/test/validation data
In the first session, in the question regarding occurrence, two
participants reported partially agreeing, and two said agreeing. In
the second question, all reported agreeing.
Participant P3 gave an example: "This is an illustrative example of
this in cases involving time series. When you choose an approach
that randomly separates the training and testing data, you are
compromising the essence of this time series; this happens because,
in time series, we are interested in capturing and preserving the
patterns and behaviors that evolve, such as seasonality and trends.".
Regarding the second session, all participants agreed on both ques-
tions.
The results can be examined in Figure A.21, and it can be concluded
that this issue can be categorized as highly relevant.



Appendix A. Appendix 64

Figure A.21: Total - Inappropriate splitting of training/test/validation data

– Hyperparameter tuning - Example: Adjust parameters such as C
(SVM), K and distance metrics (KNN), Information gain, and Gini index
(Decision Tree).

1. Neglected hyperparameter adjustment:
In the first session, in the question regarding occurrence, one
participant reported partially agreeing, and three said agreeing.
In the relevance question, one reported partially disagreeing, two
reported partially agreeing, and one said agreeing.
One participant reported partially agreeing with both questions in
the second session, while four expressed full agreement.
Figure A.22 shows that we can categorize this issue as highly rele-
vant, according to the discussions during the focus group sessions.

Figure A.22: Total - Neglected hyperparameter adjustment

2. Suboptimal hyperparameter adjustment:
In the first session, in the first question, all participants reported
partially agreeing. In the second question, two said partially dis-
agreeing, and two reported partially agreeing.
Participant P1 made an addendum: "It is challenging to establish an
absolute criterion for determining what is considered insufficient,
as the choice of approach can vary depending on the context and
complexities of the problem. Determining whether something was
incomplete or insufficient is difficult, as it may not necessarily result
in significant TD that requires revisiting the issue. Sometimes, it
may not be necessary to go back and address it".



Appendix A. Appendix 65

Participant P3 said: "If you ask a data scientist, it will usually be
considered insufficient because they are always looking for opportu-
nities to continue testing and improving models".
Four participants reported partially agreeing in the second session,
and one agreed with both questions.
Based on discussions from the two focus group sessions, we can
categorize this issue as low relevant. The final result is shown in
Figure A.23.

Figure A.23: Total - Suboptimal hyperparameter adjustment

3. Incorrect hyperparameter adjustment:
In the first session, in the question regarding occurrence, two
participants reported partially agreeing, one reported agreeing, and
one reported being not sure. In the relevance question, two reported
agreeing, and two reported being not sure.
Participant P1 gave an uncommon example that could happen: "It
is possible to create a script to test various hyperparameters, but
it can be challenging to avoid human errors, such as accidentally
changing the input data or forgetting to adjust the hyperparameters
for a specific algorithm. In a scenario where you have developed code
to test different algorithms and hyperparameters, it can be easy to
make the mistake of not consistently applying the appropriate hy-
perparameters to each algorithm. These situations are uncommon".
In the second session, all participants agreed with both questions.
In this case, it is possible to observe a difference in voting patterns
between the first and second sessions. In the first session, votes were
categorized as ’not sure’; in the second session, there was unanimous
consensus on both questions that this issue is relevant. However,
this difference allows us to categorize this issue as highly relevant
according to the discussions in the focus group sessions. Figure A.24
reveals the final result.



Appendix A. Appendix 66

Figure A.24: Total - Incorrect hyperparameter adjustment

A.3
Issues of the Model Evaluation ML Life Cycle Phase

– Choosing evaluation metric - Example: Accuracy, Confusion Matrix,
AUC, Precision, Recall, F-Measure (Classification); MRSE, R-Squared
(Regression).

1. Suboptimal evaluation metric selection:
In the first session, the first question, three participants reported
partially agreeing, and one said agreeing. In the second question,
all reported agreeing.
Participant P1 stated: "For example, consider an alarm in a secret
room with millions of dollars. The alarm should go off when there
is no real threat and vice versa. You may not notice this aspect
if you don’t use the right metric. In this case, it’s not about doing
something wrong, but rather using an insufficient metric that doesn’t
provide adequate clues, making it challenging to interpret".
In the second session, the first question, three participants reported
agreeing, and two said they were not sure. In the second question,
two reported agreeing, and three were not sure.
Participant P5 made a statement about this case: "The use of
’incomplete’ does not necessarily generate TD. It may be the case of
needing to fully meet the client’s needs optimally. For example, when
creating a model with excellent accuracy but without considering
execution time, it is possible that the client is not being served in
the best way. In this scenario, there may not be a problem in the
code itself but in satisfying the client’s needs".
Figure A.25 illustrates the conclusive outcome of the voting process
for this particular issue. Based on the discussions, it can be con-
cluded that this issue can be categorized as highly relevant. The
votes on its occurrence and relevance exhibited variability, leading
to this determination.



Appendix A. Appendix 67

Figure A.25: Total - Suboptimal evaluation metric selection

2. Inappropriate/Wrong selection of evaluation metric:
In the first question during the first session, three participants
reported partially disagreeing, and one said agreeing. In the second
question, all reported partially agreeing.
Participant P4 provided an example to illustrate their understand-
ing of this concept: "Utilizing a metric designed for a different type
of problem, like employing a regression metric to assess a classifi-
cation problem, is unsuitable".
The outcome of the first session is intriguing. Although this issue is
not considered common in practice, it is still relevant.
In the second session, both questions received equal responses from
participants, with two indicating agreement and three voting being
not sure. This suggests a mixed reaction to the questions, with some
participants leaning towards understanding and another segment
needing to be more certain.
Participant P8 said: "In my opinion, choosing the wrong metric
doesn’t necessarily result in a TD, but it can cause harm to the
business".
The outcome is that this issue can be discarded.

– Properly using methods for evaluating a model’s performance
- Example: Holdout and Cross-validation

1. Inappropriate/ Wrong properly using methods for evalu-
ating a model’s performance:
In the first session, in the first question, three participants reported
partially agreeing, and one said agreeing. In the second question,
one reported partially agreeing, and three said agreeing.
In the second session, the first question, two participants reported
agreeing, and three said they were not sure. In the second question,
one reported partially agreeing, one reported agreeing, and three
said not sure.



Appendix A. Appendix 68

Participant P5 comment: "It doesn’t seem as bad as those items
before".
There was only one vote fully agreeing in the first session on the
first question and a relatively high number of abstentions during
the second session on the same question; we can conclude that this
issue can be discarded.


	Issues that Lead to Code Technical Debt in Machine Learning Systems
	Resumo
	Table of contents
	Introduction
	Context and Motivation
	Goal and Research Questions
	Methodology Overview
	Dissertation Outline

	Background and Related Work
	Introduction
	Technical Debt
	Technical Debt in Machine Learning Systems
	Machine Learning Life Cycle
	Concluding Remarks

	Compiling and Planning the Assessment of the Candidate Issues
	Introduction
	Compilation of the Candidate Issues
	Focus Group Main Goal and Scope
	Focus Group Population
	Focus Group Preparation
	Focus Group Session Dynamics
	Concluding Remarks

	Assessing and Refining the List of Candidate Issues
	Introduction
	Participant Characterization
	Issues of the Data Collection ML Life Cycle Phase
	Synthesis of the Results
	Concluding Remarks

	Discussion
	Introduction
	Data Collection Phase
	Data Pre-Processing Phase
	Model Creation and Training Phase
	Model Evaluation Phase
	RQ1. What are potential issues that could lead to ML code TD?
	RQ2. Do the identified issues occur in practice?
	RQ3. Are the issues perceived as relevant by practitioners in terms of leading to TD?
	Limitations and Threats to Validity
	Concluding Remarks

	Conclusion
	Contributions
	Future Work

	Bibliography
	Appendix
	Issues of the Data Pre-processing ML Life Cycle Phase
	Issues of the Model Creation and Training ML Life Cycle Phase
	Issues of the Model Evaluation ML Life Cycle Phase




